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A GIVEN TWO-DIMENSIONAL CASCADE (DIRECT PROBLI_4)

By Hermann Schlichting

ABSTRACT

A simple method for calculating the frictionless incompressible

flow through a two-dimensional cascade is described for the case where

the blade and cascade geometries are prescribed and the aerodynamic

coefficients and pressure distributions are desired. The calculation

method which makes use of a continuous vortex and source-sink distri-

butions is set up in such a manner that each geometric parameter can

be varied independently. Measured values of pressure distributions

agree well with those calculated by present theory.
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CALCULATION OF THE FRICTIONLESS INCO_._RESSIBLE FLOW FOR

A GIVEN TW0-DD_NSIONAL CASCADE (DIRECT PROBL_I)*

By Hermann Schlichting

i. INTRODUCTION I

For further developments in jet-engine design, a deeper under-

standing of the physical flow processes is indispensable today. For

axial-flow machines, the flow problems are centered around the so-called

cascade obtained by developing a coaxial cylinder section through the

rotor and the stator. Necessarily, the starting point for all investi-

gations on cascade flows must be the incompressible flow through a two-

dimensional cascade. 0nly when this flow can be controlled, can one

hope to do fundamental research regarding the remaining influences as,

for instance, wall and clearance losses, compartmenting, ccmpressibility,

and centrifugal forces.

At the Institute for Flow Mechanics of the Technical Acade_ of

Braunschweig, systematic cascade investigations, theoretical as well

as experimental (ref. 1), have been under way for several years. Earlier

theoretical investigations on cascade flows were based throughout on

frictionless fluids; the above named investigations took into account,

for the first time, the friction of the fluid also, by means of

boundary-layer theory considerations (ref. 2). This makes it possible

*"Berechnung der reibungslosen inkompressiblen Str_mung fur ein

vorgegebenes ebenes Schaufelgitter." VDI - Forschungsheft 447_ Edition B,

Vol. 21, 1955.

iThe author has lectured on the method in excerpt at the flow con-

ference of June 9-11, 1954 in ZUrich, arranged jointly by the VDI -

Branch Committee for Flow Research, the Swiss Engineers' and Architects'

Association, and the Confederate Technical Academy ZUrich. The investi-

gations were supported by the German Research Association. L. Speidel

tested the calculation method within the scope of the cascade research

program of the Institute. The measurements used for comparison with

the theory (section 6) have been taken from as yet unpublished voluminous

experimental cascade investigations by N. Scholz. Contributions to

these investigations in the form of theses and research memoranda of

the Mechanical Engineering Department of the Technical Academy of

Brauschweig were made by K. H. Grewe (1951), J. Vahlbruch (1950),

W. Richter (1952), and H. Sch_ffer (1951).

L-403
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to determine theoretically the loss coefficients of a cascade which

govern the efficiency of the turbo-machine. The aim of the cascade

investigations is to indicate, for a given application, cascades of

optimum efficiency. For this purpose, the connection between the

geometric and the aerodynamic parameters of a cascade must be known.

The geometric parameters of a two-dimensional cascade are, according

to figures l(a) to l(c), the blade profile and the cascade geometry which

is determined by the pitch ratio t/_ (where t denotes the spacing,

the blade chord), and by the blade angle _s" As aerodynamic parameters

we designate the inflow and outflow velocities W 1 and W23 the inflow

and outflow angles _l and _2, the pressure change 2_p = P2 - Pl in

the cascade where Pl and P2 denote the static pressures in front

of and behind the cascade, the pressure distribution p(x) on a cascade

blade, and the energy loss in the cascade which, for incompressible

flow, is best measured as total-pressure loss _Pg = Pgl - Pg2' with

Pgl and Pg2 denoting the total pressures in front of and behind the

cascade. From the pressure distribution on the cascade blade we may

then determine the resultant blade force.

The connection between the geometric and aerodynamic parameters is

found in two steps: (1) determination of the pressure distribution on

the blade, according to potential theory, for frictionless flow and

(2) calculation of the blade-boundary layer and the flow losses from

this pressure distribution. Here we shall treat only the first step. 2

Two main problems must be distinguished: for the first main problem,

_l and _2 are thus given the velocity triangle; the cascade and blade
geometry and the pressure distribution on the blade are the desired

quantities (for instance, with the secondary condition that the distri-

bution should be "as favorable as possible with regard to the flow

losses"). For the second main problem the cascade and blade geometry

are given and the pressure distribution on the blade, the blade force,

and the outflow direction as a function of the inflow direction are

desired. For the first main problem, therefore, the aerodynamic param-

eters of the cascade are given and the geometric parameters are desired;

whereas the second main problem represents the inverse case. The first

main problem is applied chiefly for practical design problems (for

instance, selection of an optimum cascade for given operational condi-

tions); the second main problem is applied in systematic cascade

2L. Speidel (ref. 3) reported recently on voluminous results

regarding systematic calculations of the loss coefficients (second step)

for unstaggered cascades. Communication of results for staggered cascades

will follow.
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investigations where, for instance, the geometric cascade parameters

are varied in order to find the most favorable cascades. Also, the

second main problem is applied for "checking" a cascade of predetermined

geometry, which frequently occurs in practice.

For the first main problem (inverse problem), N. Scholz (ref. 4)

indicated recently a convenient calculation method. In what follows,

we shall treat the second main problem (direct problem) exclusively.

Both methods are based on the interpretation of cascade flow according

to lifting-surface theory where, in contrast to the tunnel flow, the

individual blade is interpreted as an airfoil and where the mutual inter-

ference of the blades plays an important part. For the single airfoil,

the connection between the geometric and the aerodynamic parameters has

been largely clarified by theoretical and experimental investigations.

For the cascade, however, we are still a long way from having deep

insight, due to the larger number of geometric and aerodynamic parameters.

The potential flow of a two-dimensional cascade may be calculated

with the aid of conformal mapping or according to the singularity method.

For the conformal mapping which is limited exclusively to the two-

dimensional problem, the flow around the infinite row of congruent blades

is reduced to thewell-known circular-cylinder flow by means of a com-

plex transformation function (cf. F. Welnig, ref. 9; i. E. Garrick,

ref. 6; and W. Traupel, ref. 7). This method does give an exact solution

of the flow problem but is so troublesome with respect to numerical per-

formance, even for simple blade shapes, that the investigation of a

larger number of cascades is, in practice, not possible. In particular,

neither the first nor the second main problem can be solved directly by

means of this method; nor can a row of cascades be investigated where

only one geometric cascade parameter varies - for instance, the pitch
ratio - but all others are to be fixed.

In the singularity method, the blade contour is replaced by

singularities (vortices, sources, and sinks). This method is funda-

mentally suitable for the three-dimensional case also; it was used by
N. Scholz (ref. 4) for the solution of the first main problem and will

likewise be taken here as a basis for the solution of the second main

problem. The singularity method offers the opportunity to make, in a

simple manner, the transition from the single blade to the blade in

cascade configuration and thus to express the influence of the cascade.

For the single airfoil this method was first applied by W. Birnbaum
(ref. 8) and H. Glauert (ref. 9); later, it was developed to great

perfection by F. Riegels (ref. lO) and H. J. Allen (ref. ll). The first

applications to a cascade stem from M. Schilhansl (ref. 12) and A. Betz

(ref. 13). J. Ackeret (ref. 12), E. Pistolesi (ref. 19), V. Liebleln

(ref. 16), and R. A. Spurr and H. J. Allen (ref. 17) contributed to the

future improvement of this method for the cascade. S. Katzoff, R. S. Finn,
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and J. C. Laurence (ref. 18) work partly with the conformal mapping_

partly with the singularity method which is rather troublesome numer-

ically. In some cases, for simplification of the calculation, vortex

and source-sink distributions are assumed along the length of the blade

chord and are arranged on a straight blade chord line instead of on the

mean chamber line. Just as in the theory of W. Birnbaum and H. Glauert,

this means a good approximation only for moderate chamber of the blades,

as in the case of compressor cascades. We shall also use this simpli-

fication; however, an extension to large blade cambers, like those in

turbine cascades, is possible in principle.

For the rest, we choose for the solution of the second main problem

a method which has already proved satisfactory for the single airfoil

(refs. 19 and 20). From this application it is known that the exact

solution leads to an integral equation which should be satisfied along

the entire prescribed blade contour but may be solved approximately
by satisfying it only at a few discrete points (the so-called control

points). Thereby the solution of the integral equation is reduced to

the solution of a linear system of equations. Since convenient methods

with high accuracy are known for determining the velocity distribution

on the single profile (refs. l0 and ll), we shall, in the calculation

method for the cascade, omit representing simultaneously the single

profile with great accuracy. Rather we shall emphasize a good expres-

sion of the influence of the "cascade geometry," that is, the pitch

ratio and the stagger angle.

The method for determining the aerodynamic coefficients for a

prescribed cascade described below leads to two systems of linear equa-
tions for the coefficients of the circulation distribution and the

source distribution (usually two systems of six equations with six

unknowns each). Certain fixed values which appear in these systems of

equations and are rather hard to calculate, were listed universally in

tables as functions of the pitch ratio t/_ and of the stagger angle
(so-called downwash tables). By this means, the greatest part of the

calculation is taken care of, once and for all, for every individual

case Of a cascade; there remains only the solution of the two systems

of equations and, then, the determination of the aerodynamic coefficients

and the pressure distribution. According to experience up till now,3

the complete calculation of a cascade according to potential theory
(aerodynamic coefficients and pressure distribution) for six different

inflow angles requires about 20 to 2_ hours for a trained computer.

3The calculation method served as a basis for systematic theoretical

investigations regarding the loss coefficients of cascades; a few results

had already been given in references 1 and 3.
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2.1 The Kinematic Flow Ccnditions

The flow of a frictionless incompressible fluid about a prescribed

body is obtained3 according to the sir_ularity methoa, by replacing the

body by a suitable source-sink and vortex distribution in its interior

and superimposing a translational flow on this field. The sir_ularities

are determined from the kinematic flow condition, according to which on

the entire boundary of the body the resulting velocity, that is, the

sum of the translational velocity and the velocity induced by the sources

and vortices is tangential to the contour. In order to produce the flow

about a cascade blade according to this method, we choose a suitable

linear-type continuous source distribution q(x) and a vortex distri-

bution 7(x), where x signifies the coordinate in the direction of

the blade chord _.

The general case of a profile of finite thickness and a camber

different from zero n_y be represented, for moderate thicknesses and

cambers, by superposition of a thickness distribution and a mean camber

line (figs. 2(a) to 2(e)). If Yu(X) and Yo(X) signify the profile

coordinates perpendicular to the x-direction on the lower and upper

sides of the profile, respectively, and if Yd(X) and Ys(X) are the

corresponding coordinates of the thickness distribution or the mean

camber line, there applies

and

(2)

According to the singularity method, we may represent the flow

around a cambered, lift-producing profile as a superposition of the flow

about the uncambered profile without incidence and the flow about the

mean camber line with incidence. We have therefore to superimpose:

(1) the flow about the uncambered profile (source distribution q(x)

and the velocity component U_ of the translational flow parallel to

the chord) and (2) the flow about the mean camber llne (circulation

distribution 7(x) and the translational flow which consists of the

components V_ and U_.

Strictly speaking, the singularity distributions q and 7 should

be placed on the mean camber line. For moderate heights of camber f,
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however, they may be located with good approximation on the profile

chord, as mentioned before; considerable simplification of the calcu-

lation is thus obtained. The range of application of the method remains

thereby limited to cascades of moderate camber (about f/Z _ O.1 to O.l_).

For compressor cascades this is sufficient in most cases, whereas the

calculation method for strongly cambered turbine cascades requires an
extension.

The integral over the circulation distribution y(x) per unit

length gives the total circulation P of a blade according to

r :/_--o 7(x)ax (3)

Hence follows, according to W. Kutta and N. Joukowsky, the lift A of

a blade per unit width as

A : PW" r' = pW_I 7(x)d-x
x=O

(4)

o ÷  ount t.o
translational velocity. For the single profile, the lift A acts

perpendicular to W_. Equation (4) likewise applies to the cascade if

we understand by W the vectorial mean of the inflow velocity W 1

and the outflow velocity W 2. (Compare fig. l(a).) The source-sink

distribution q(x) must satisfy the condition

JX q(x)a_ : o
=0

(_)

so that a closed contour (uncambered profile) results for the thickness
di str ibut ion.

The kinematic flow condition for the relationship between the

prescribed contour and the pertaining singularity distribution likewise

may be split up into two conditions, corresponding to the decomposition

of the profiles into the mean camber line and the thickness distribution.

If u and v denote the x- and the y-component of the velocities

induced by the vortex and by the source-sink distribution, the kinematic

flow condition for the mean camber line according to figure 3(a) (first

kinematic flow condition) reads
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For the thickness distribution, the source distribution q(x) lies,

according to figure 3(b), on the profile chord. Here the condition

must be satisfied that the contour is identical with the streanLline

which separates the external translational flow from the internal

source-sink flow. By applying the continuity equation to the area

thickly outlined in figure 3(b), we obtain

(6)

r i u) d dx_U_+UYd +_q _ = [u_+ +_

or

-- +u) (7)

as the second kinematic flow condition. Here, too, we shall take the

values of u and v, not on the contour, but on the blade chord (thus_

for y = 0). Equations (6) and (7) apply in the same n_anner for the

single profile and for the blade in the cascade configuration. The

influence of the cascade is contained implicitly in the induced

velocities u and v. The single profile results as the limiting case

of a cascade with the pitch ratio t/l = _.

2.2 The Induced Velocities

For a prescribed cascade we calculate, first, from equations (6)

and (7) the singularity distributions 7(x) and q(x) and, next, from

these, the aerodyna_.ic coefficients. The first step of this calculation

(determination of 7(x) and q(x)) is rather laborious since the induced

velocities must first be determined from Biot-Savart's law. _ne second

step (determination of the aerodynamic coefficients for known circulation

distribution), in contrast, proves to be very simple.

For the single profile (characterized by subscript E) which extends

from x = 0 to x = _ (compare figs. 2(a) to 2(e)) and has a circula-

ticn distribution 7(x) and a source-sink distribution q(x) along the

chord, we obtain for the induced velocity WE(Z ) at an arbitrary point
of the xjy-plane, in complex notation
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__1 fx q(x')+ iT(x')WE(Z) = UE -irE _ '=0 z - x'
die ! (8)

where x and x' denote, respectively, the real coordinates of the

control point and the running point along the source distribution.

According to assumption, the induced velocity is needed only on the

chord, that is, for z = x with 0 _ x _ Z. This velocity is,

according to equation (8)

1/x z q(x') + iT(x')WE(X'0):_ '=0 x- x'
ax' (9)

with a singularity at x' = x. The integral is to be interpreted as a

Cauchy main value. If the induced velocity is split up into the contri-
butions of the vortex and source distributions (denoted by subscripts 7

and q), that is, if we write

uE = UTE + UqE vE = V%E + VqE
(lO)

there follows from equation (9)

fx Z 7(x') ax'_m = + l 7 ( X ) _ I ] I ( ll )

- _ VTE = 2_ '=0 x' - x

and

1 [z q(x') = + 1 q(x) (12)
- Ux -x' _' VqE -2UqE 2;_ '=0 x

The plus sign applies for the upper side, the minus sign for the lower

side of the profile.

For the cascade whose geometry is fixed, according tofigure l(b),

by the angle of stagger h and the pitch ratio t/Z, we obtain, if 7(x)

and q(x) are prescribed along each of the blade chords, the following

expression for the induced velocity field (compare E. Pistolesi (ref. 15)

or N. Scholz (ref. 4)):
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(x') + iT(x' coth z - x' ei dx' (13)
w(z) Jx':O t

or for the value on the chord (z = x)

w(x,o): u(x) - iv(x)

-eih/xZ [q(x')
2t '=0

+ iT(x')_c°thI_ x-t x' eikld x,

(14)

This integral also is to be interpreted as a Cauchy main value. For

the limiting case t/Z_, equation (14) is transformed into equation (9)

for the single airfoil.

If we now visualize the expressions resulting for the induced

velocities u and v (for the single airfoil equations (ll) and (12),

for the cascade by splitting-up of equation (14)) as introduced into

equations (6) and (7), we recognize that from them two coupled integral

equations for 7(x) and q(x) result. An analytic or an exact

numerical solution of these integral equations does not appear possible

for the general case of an arbitrary cascade. We therefore choose an

approxlz_tion method where we satisfy the two kinematic flow conditions

which have to be fulfilled over the entire length of the blade chord

0 _ x _ Z, only at a few discrete control points. Thus we reduce the

solution of the integral equations to the solution of two systems of

linear equations for certain free coefficients of the circulation and

source distribution. We shall discuss below this method of control

points, first, for the case of the single blade and shall transfer it

later to the cascade.

3. PERFOR_LANCE OF THE CALCULATION FOR THE SINGLE PROFILE

5.1 Expansion in Series According to H. Glauert

For the single profile, the angle of attack m_ of the chord with

respec_ to the direction of the translational flow, according to fig-

ure 2(b) is, generally, small; thus u << U_. We may therefore simplify

equaZions (6) and (7) by neglecting u compared to U_. Furthermore,

we _y replace the y-component of the induced velocity vE = VTE + VqE

by v E = VWE because on both sides of the chord, according to
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equation (12), VqE has opposite signs, thus is, on the average, equal

to zero on the chord. Thus, the simplified kinematic flow conditions

for the single profile read

(19)

and

dYd/, : q(x)/2u: (16)

By the simplification we perceive that, first, both conditions are now

independent of one another (the first contains only the circulation

distribution, the second only the source distribution) and, second, that

now only the first condition represents an integral equation for 7(x)

whereas q(x) may be determined from the second condition by a simple

quadrature. Both circumstances contribute considerably to facilitating

the calculation. 4

Another circumstance which makes the calculation for the single

profile much simpler than that for the cascade is the fact that, if

7(x) and q(x) are suitably selected, the integrals for the induced

velocities on the single airfoil may be evaluated analytically

according to equations (ll) and (12), which is impossible for the

corresponding integrals of the cascade according to equation (14). This

is the more significant, as in both cases these integrals contain for

the induced velocities a singularity which is rather inconvenient for

a numerical quadrature.

In order to be able to calculate the induced velocities for the

single profile conveniently, we expand 7(x) and q(x) according to

H. Glauert (ref. 9) and H. J. Allen (ref. ll) into a trigonometric

series and introduce instead of the coordinate x the trigonometric

variable $ according to

x=z(l- cos ) (17)

_We shall note here that neglecting u compared to U_, which

leads to this essential simplification for the single profile, is

generally no longer permissible for the cascade, since, in the case of

narrow spacing or large deflection, the induced velocities u and v

become comparable to U_, due to the mutual interference of the blades.
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so that _ = 0 denotes the leading edge and _ = _ the trailing edge.

For the circulation distribution we write

7(x) = 2U_o cot _+ A I sin q_ + A 2 sin 2q_ +...)

and, correspondingly, for the source distribution

(18)

..I
with AO, AI, A2, . . . and BO, BI, B2, . . . as free coefficients

which have to be ascertained from the kinematic flow conditions. In the

expression for the source distribution, the first two terms must be

combined so that the closed-contour requirement, equation (5), is

satisfied term by term.

By evaluating equations (ll) and (12) with equations (18) and (19)

we obtain for the induced velocities the explicit analytical expressions

UTE = +_U_o cot _+ AI sin _ + A2 sin _ +..._ (20)

vyE = U_EA 0 + A I cos _ + A2 cos 2_ + . . ._ (21)

_ :_[_oI_+_oo__I-_2cos_- _3_o_3_-••.] (22_

VqE = +U,_0(cot _- 2 sin _I + B2 sin 2_ + B 3 sin 3@ +.. _ (23)

3.2 Systems of Equations for the Coefficients of

the Singularity Distributions

For a prescribed camber distribution Ys(X) and thickness distri-

bution Yd(X), the coefficients AO, A l, A2, . . . and

BO, B2, B3, . . are to be determined from the kinematic flow
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conditions, equations (15) and (16). From these there results, if we

introduce VTE according to equation (21), and q(x) according to

equation (19) and denote derivatives with respect to x by primes

-Ao +A 1 cos _+ A2 cos 2_ + ..... K+ y_(x) (24)

and

 o(cot • =

In equation (24)

K = tan moo = V_/U_ (26)

denotes the parameter for the angle of attack of the profile• Since

equations (24) and (2_) are to be satisfied in the entire profile

region 0 _ x _ Z, an infinite number of coefficients is required in

the general case. In practical calculations, however, we try to manage

with the s_llest possible number of coefficients. Then the kinematic

flow conditions can be satisfied at only as many discrete points

(control points) along the length of the blade chord as terms are taken

in equations (18) and (19). Thus the question arises as to the distri-

bution of these control points over the length of the blade chord in

order to attain an optimum approximation to the exact solution with the

smallest possible number of terms.

For this purpose, the so-called three-quarter chord theorem has

been successfully applied in a number of cases (refs. 19 and 20). This

theorem states that, if only one control point is selected, it is to be

placed at the point x = ¼ 2. For n control points, we divide the

entire length of the profile chord into n equal strips each with a

chord Zn = _n and assume the control_ points at the ¼ Zn points. _Thus

we have one control point at x I =_ Z, two control points at x I = _ Z

!
1-23_, x2 = 7--'Z12' andand x 2 = _ _, three control points at x I =

ll

x 5 = _ Z, or generally n control points at

xV (n) _ 4_ - 1 _ (27)
4n
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with v = i, 2, • n. With use of the three-quarter chord theorem,

the kinematic flow conditions, equations (24) and (25), are replaced by

the two systems of equations

-A0 + A I cos @v(n)+ A 2 cos _v(n)+... Au_ 1 cos_n- 1)_v(n)_ =

-K + Ys_v(n)_

and

B0 I°t  v(2n) 2 sin _v(n) 1 + B 2 sin 2_v(n) +

(28)

• Bn sinEn_v(n)_ =

Yd_XV(n)_ (29)

with

cos q_V(n) = 1 - (4v - 1)/2n (30)

We thus obtain for n control points two systems of n equations each

for AO, A1, . . An_ 1 and BO, B2, . . . B n. The, values of the

trigonometric functions at the control points _v kn) may be calculated

universally.

It is expedient, for the evaluation of equation (28), to subdivide

the coefficients AO, A1, . . into a contribution of the angle of

attack (second subscript _) and a portion independent of the angle of

attack (second subscript 0). 5 We assume

AO = AO0 + m_O_ _ (31)

A 1 = AIO + KAI_ • . .J
9For the single airfoil the portion independent of the angle of

attack is given by the profile camber; for the cascade it is produced

by the induced velocities of the cascade} thus it appears also for

sym.s_etrical profiles.
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Thereby we obtain, instead of equation (28), the two systems

-Ao0 + Alo cos _v (n) + A20 cos 2q% (n) + . . . +

A(n-1),O c°s_n- 1)q_v(n)_ = Ys'_v(n)_ (32)

-Ao_ + AI_ cos cPv(n) + A2_ cos 2cpv(n) + . . . +

A(n_l), _ cos_n - l)q%(n)] = -i (33)

The system according to equation (33) has for an arbitrary n _ 1 the

solution

= 1 = A2p ..... 0

so that equation (31) is simplified to AO = AO0 + K, A 1 = AI0, . . .

This means that, for arbitrary thickness and camber distribution, the

circulation distribution stemming from the angle-of-attack parameter

tan m_ = K is, as for the flat plate, equal to 2V cot (_/2).

For a prescribed single profile we must therefore solve the two

systems, equations (32) and (29). The solution of equation (52) yields

the additional circulation distribution due to the camber; the solution

of equation (29)3 the additional velocities due to the thickness. The

explicit systems of equations for one control point as well as for two

and three control points are given in table 1.

3.3 Aerodynamic Coefficients

After the coefficients of the singularity distributions have been

determined3 the aerodynamic coefficients can be obtained from them very

simply. In the total circulation only the two first terms of equation (18)

make any contribution. From equations (5) and (18) there follows

P = U=Z_ + _ A
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and thus from equation (4) for the total llft of the wing per unit width

A = OU_W_Z_ + 7 A (3_)

For the llft coefficient cA defined by

cA= (3 al

there results, consequently

A cos a.

+ _ cos _ + sin
(36)

and

(dcA/dm_)m_= 0 = 2_
(36a)

This value is exactly correct for the flat plate.

The velocity distribution WK(X) along the contour is obtained

from the velocity distribution Us(X) along the chord llne by means of

the relationship indicated by F. Riegels (ref. lO)

#_

Here i/\/1 + y_2 is the so-called Riegels factor known from the

-- c_t distribution on the chord followsthickness distribution. The velo " y

from

U s = U_ + UqE + u?,E

or, after substitution of equations (20), (22), and (31) from



16

i

D

@@@

D@@@@

@QQ@

@@0

m = + Bo(1 + 2 cos _) - B2 cos _ - B3 cos 3_ - • • +
U_

ADo cot + sin @ + A20 sin 2_p +A10
+_K cot (38)@

/ 2

with the upper and lower signs for the suction and pressure sides,

respectively. WK(X ) may be conveniently determined from equations (37)

and (38), after the coefficients of the singularity distributions have

been ascertained. In equation (38), the first term, in brackets, gives

the velocity distribution of the symmeta_cal profile for symmetrical

approach flow; the second term, in pgrentheses, gives the contribution

of the camber for zero angle of attack, and the third term gives the

contribution of the incidence of the profile with the s-ugle

a_ = arc tan K. This third term is the same as in the case of the flat

plate with incidence.

At the profile nose (x = O, @ = O) generally Us = _ and thus

for the infinitely thin profile also, WK = _. The pressure then has in

the neighborhood of the nose very large negative values (minimum-pressure
peak). The profile nose is in a flow either from below or from above.

The infinitely large velocitydoes not appear, however, if in equa-

tion (38) the terms with cot(@/2) vanish, that is, for

Ao = 0 (38a)

In this case there is no flow about the leading edge; that is, shock-

free inflow occurs. At an angle of attack in the case of shock-free

inflow, which plays a role in the older literature on turbo-machines,

the front stagnation point, for an infinitely thin profile, lies exactly
on the leading edge. From equation (38a) there results for the angle

of attack pertaining to shock-free inflow (denoted by subscript st)

A0 = AO0 + Kst =Ao0 + tan m_st = 0

tan _=st = -Ao0 (38b)

For profiles of finite thickness, the velocity at the nose remains

finite. Equation (37) yields for WK_ _ at x = 0 the limiting

value =/_ which, with RN as the nose radius, is calculated to be
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(38c)

(Compare ref. 3.) The concept of shock-free inflow according to equa-

tion (38a) is retained also for profiles of finite thickness since,
with such profiles, for m_ _ _st a large local minimum pressure point

appears also in the neighborhood of the nose.

A comparison of the aerodynamic coefficients calculated according

to this approximation method with exact solutions follovs later in

section 3.5.

3.4 Checking of the Profile Shape

Since in the approximate method the prescribed profile is approxi-

mated at only a few control points by the tangents of the mean camber
line and the thickness distribution, it is expedient to check whether

it is represented wlth sufficient accuracy. This is possible by

comparison of the prescribed mean camber line and thickness distribution

with the corresponding values of the approximation polynomial. The

formulas required for this will be given here.

For the mean camber line, the approximate calculation yields, by

integration of equation (24) with V_ = 0:6

Ys-[-= Al(l- cos +121 A2(cos cos 3q )-

l__ A3(1 _ 2 cos 2_+ cos 4_) + . . . (39)16

The thickness distribution follows likewise by integration from

equation (27)

_or V_ _ 0 we obtain merely an additional inclination of the

mean camber line (angle of incidence) which is unimportant here.
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l__ B3(2 sin 2_ - sin 4_) + . . (40)
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The numerical evaluation of equations (39) and (40) is discussed in

section 3.5.

3.5 Examples

Before transferring the approximate method to the cascade, we

shall examine its usefulness for the single profile with the aid of a

few examples for which exact solutions are known.

3.5.1 The flat plate.- We assume the flat plate to have an angle

of attack m_. Since the camber is zero and therefore Ys _ 0, there

results from equation (32), independently of the number of control

points selected

AO0 =AI0 = A20 = . . =0

According to equation (29) we have also

B0 = B 2 = B3 = . . . = 0

Thus there follows, in coz_lete agreement with the exact solution, from

equation (36) for the lift coefficient

cA = 2_ sin _

and from equation (18), because of A0 = K = V=/U_ and A 1 = A 2 = • • • = O,
for the circulation distribution

7(x) = 2Voo cot
2
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3.5.2 Parabolic profile.- For a parabolic profile with the camber f,

the chord of which coincides with the x-axis, there applies

We assume the direction of the approach flow to be parallel to the chord

(_ = 0, that is, K = 0), and one control point to be chosen at x I = _ Z.

From the fulfillment of the kinematic flow conditions (equation (34)) at

this control point, we obtain the coefficient A 1 whereas we have to
as s Liv_e

AO0 = A20 = A30 ..... 0

For AIO we obtain, because of

the values

cos _i (I) - i and
2 =- 2f/ 

- !2 A10 = -2f/Z or A10 = 4f/Z

respectively. According to equation (31), B 0 = B 2 = B 3 = • • • = 0.

Thus there results, according to equation (36), for the lift coefficient

cA =

and, according to equation (20), for the circulation distribution

7(x) = 8(f/Z)U_ sin

Both expressions agree completely with the solution of W. Birnbaum for

the parabolic profile in the case of shock-free inflow (zero angle of

attack). If we calculate with several control points, we arrive at the

same result, as may be easily confirmed.

5.5.3 Syzmetrical Joukowsky profile.- Within the scope of the

approximate calculation, the symmetrical Joukowsky profile is the

simplest case of a profile of finite thickness, since it is represented
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by the first term in equation (19). A Joukowsky profile of the thick-

ness d has, for a moderate thickness ratio d/_ 3 the thickness

distribution

control point we need y_

follows

_ (__)_;_Yd(X) _d_ - (41)

The greatest thickness lies at x = _. For the calculation with one

for x = _ Z. From equation (41) there
4

and thus from equation (29) as the qualifying equation for B 0

or

,o--(,/,f)_,/,> ,,_-,,_-... _-o
The approximate calculation with one control point yields, therefore,

according to equations (40) and (17), for the contour

Yd(X) - 2 d(sin _ + 1 2_)
3_ _ sin

3_

in complete agreement with equation (41). The calculation with several

control points leads to the same result.

In the further examples, for single profiles as well as, later on,

for the cascade, we shall select three control points since this number

yields for the cascade results with fully sufficient accuracy so that

the considerably larger calculation expenditure for a higher number of

control points is not worth while.
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3.5.4 NACA OOlO profile.- As another single profile we shall treat

a symmetrical profile of the old NACA system7 which will later be used

in the cascade also. The NACA OO10 profile has the thickness distribution

--_ = Z + 0.1422 - 0.0508 (42)

with

y& = 0.07423 - 0.0630 - 0.3516 x + 0.4265 - 0.203
Z

(43)

Tables 2 and 3 contain, among others, the values of y_Z according to

equation (42), of y_ at the three control points as well as the

+factor which is required for the calculation of the velocity

distribution according to equation (57). The solution of the system of

equations for BO, B2, B 3 with these values of Ydl' Y_' Yd3

yields the numerical values in table 4. Because of Ys m O, the

coefficients AO0 , Alo , A20 are all equal to zero. With these values

we can, first, check the profile contour according to equation (40).

The approximate calculation agrees satisfactorily with the prescribed

contour (fig. 4). For the velocity distribution in symmetrical approach

flow, calculated according to eqmations (57) and (58) with K = O, fig-

ure 4 likewise shows good agreement with the exact solution. Only in

the neighborhood of the trailing edge do somewhat larger deviations

appear which are, however, to be expected because of the differences in

the contours.

3.9._ NACA 8410 profile.- Finally we shall calculate a cambered

profile of finite thickness which will also be used in the cascade

later on. The NACA 8410 profile, with the coordinates according to

7Systez_tics of the National Advisory Committee for Aeronautics.

Regarding the old NACA systematics, compare Jacobs, E. N., Ward, K. E.,

and Pinkerton, R. M.: The Characteristics of 78 Related Airfoil Sectlons

From Tests in the Variable-Density Wind Tunnel. NACA TR 460, 1933.
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tables 2 and 3, 8 has a relative thickness _ = O.l and a relative

camber _ = 0.08. Table 4 contains the coefficients for the singularity

distributions. Figure 5 shows the result of the check of the profile

contour. The agreement with the prescribed variation is satisfactory

here, too. Figure 6 contains the velocity distribution for different

of attack. The angle of attack _0 of zero lift is _0 = -7"3o;angles

the shock-free inflow corresponds to a_st = 2"0°" For larger angles

of attack, a pronounced minimum-pressure peak appears in the neighborhood

of the nose on the suction side.

4. PERFORMANCE OF THE CALCULATION FOR THE CASCADE

4.1 The Kiner_atic Flow Conditions

We shall now transfer to the cascade the three-quarter chord theorem

whose applicability for the single profile was proved with the aid of

the preceding examples. Incontrast to the single blade, there exist,

for the cascade, generally larger angles between the direction of the

approach flow and the blade chord, and the deflection caused by the

cascade, that is, the difference in direction between W 1 and W2,

can no longer be regarded as a small angle. Figures 7(a) and 7(b) show

the velocity diagram of a staggered cascade. The translational velocity

W_ has, just as in the case of the single airfoil, the components U_

parallel and V_ perpendicular to the blade chord; however V_ now is

not always small compared to U_. The quantity W_ denotes the trans-

lational velocity of the cascade, free from circulation (free from

deflection). For the cascade with deflection (with circulation) the

cascade induces an additional velocity parallel to the cascade front +_Aw

which, far ahead of and far behind the cascade, has the same magnitude

but opposite signs. The inflow velocity W 1 far ahead of the cascade

is the resultant of W_ and +&w; the outflow velocity W 2 is the

resultant of W and -Aw. Between the circulation P of a blade and

the induced velocity _w there exists the relationship immediately

following from figures 7(a) and 7(b)

Aw = F/2t (44)

8We want to point out that the thickness distribution of the

NACA 8410 profile given in table 2 slightly deviates from that according

to footnote 7.
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Since, for the cascade, the induced velocities u and v generally

must not be neglected compared to U_, as they are for the single air-

foil, we have now to use the complete kinematic flow conditions according

to equations (6) and (7). For the further calculation, we shall write

the latter in the form

and

v u>m+--=y s +
U_ U_

(45)

uI (46}

These conditions, with the values of u and v, will be satisfied on

the chord also for the cascade.

4.2 The Induced Velocities

In order to be able to evaluate the kinematic flow conditions

according to equations (_}) and (46) for the determination of the

singularity distributions, we must first obtain the induced velocities

and v on the blade chord for the cascade just as before, for the

single airfoil. The general formula for these induced velocities of

the cascade was furnished by equation (14); however, the integral

contained in it cannot be solved analytically for the general case of

the staggered cascade (_ / 0). Thus we are dependent on numerical

methods for the evaluation of this integral. In these methods the

singularity of the integrand of equation (14) is again troublesome for

x' = x which, however, stems only from the contribution of the single

airfoil. Since, for the single airfoil, all components of the induced

velocity could be evaluated analytically for the singularity distribu-

tions on the basis of the series according to H. Glauert (compare

section 3.1), it is possible to eliminate the singularity of the

integrand by subtracting the induced velocity field of the single air-

foil from that of the cascade. Therefore

w = + wo (47)

The subscript G denotes the "remainder of the cascade," that is, the

contribution of "all remaining" blades without the single blade con-

sidered. The explicit expression for wG follows from equations (9)

and (14) by taking the difference, after introducing, in addition, the
dimensionless x-coordinates

U
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we obtain

wo(_) =%-iv G

: x/_ _, = _,I_ (48)

1 _ (_') + i7(_' coth ei_ l d_'

2 t _'=o -3

(49)

This induced velocity field of the remainder of the cascade can be con-

veniently evaluated numerically since the influence function

F(_ - _') = ei_ coth ei_ - _ _ . _, (5o)

is re_nlar for _' = _ (on the further calculation of equation (49)

compare the following section 4.3 and later section 7.1).

4.3 Expansion in Series

Corresponding to equation (47), the two components u and v of

the induced complex velocity w = u - iv also are split up into the

contribution of the single airfoil and that of the remainder of the

cascade

u = uE + uG v = vE + vG (5l)

We divide these parts again, as before for the single airfoil according

to equation (lO), into the contributions of the circulation distribution

(subscript 7) and of the source distribution (subscript q)

uE : U_E + UqE

v E = VTE + VqE

uo = uTo+ UqG[

r
VG VTG + VqGJ

(52)

The four components of the single airfoil _E' UqE' VTE , and VqE

are given in integral form by equations (ll) and (12) and as explicit

formulas by equations (20) to (23), respectively.



@@

• @••

e5

Similarly we obtain for the four components UTG , UqG , VTG , and

VqG of the remainder of the cascade from equation (49), by splitting,

the integral representations

UTG = 2 t '=0 7(_' )J(F)d_' (53)

1

_ i itf_ %(_')R(F)d_' (54)v7 G 2 ':0

1

UqG - 21t_f_.=0 q(_')R(F)d_'
(55)

1

1 Z/_ q(_ ')J(F)d_' (56)VqG = 2 t '=0

with R(F) and J(F) as real and imaginary parts, respectively, of

the function F(_ - _') according to equation (50). If we introduce,

furthermore, into equations (53) to (56) for y(x) and q(x) the

Glauert series according to equations (18) and (19), we obtain, in

analogy to equations (20) to (23)

=  (AogTo+Al,l+A2g 2+ )

VTG = Uoo(AOfT0 + AlfTl + A2f72 + . . .)

Uqa: u_(BOgqO+ B2g_2+ B3gq]+ . . .)

Vqo= u_(_ofqo+ B2fq2+ B3fq]+ . . .)

(57)

(58)

(59)

(6o)

In equations (57) to (60), the quantities gTo' _i' " " " and

gqo' gq2' " " " denote the dimensionless induced velocities in the

x-dlrectlon caused by the vortex distribution (subscript y) and the

source distribution (subscript q), respectively. The same applies

for the quantities f%0' fTl' " " ' and fqO, fq2, " " • regarding

the y-direction. All these quantities are functions of x/_, t/_, and

k. In the limiting process toward the single airfoil (t/_ _®) all

these functions tend toward zero} they have been universally calculated
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in dependence on the three parameters x/Z, t/Z, and h. (Compare

later section 7.1 and the appendix "Cascade-Downwash Tables".) This

signifies an iz_ortant advantage for the application of the calculation

method as will be shown later.

Since the kinematic flow conditions, equations (45) and (46), are

satisfied on the blade chord for the calculation method with the values

of u and v, the two components of which UTE and VqE have,

according to equations (ll) and (12), opposite and equal values on

both sides of the chord, these two components are on the average, equal

to zero on the chord. Thus the values of u and v to be substituted

into equations (45) and (46) become, according to equations (51) and

(52)

u =UqE+ UqG+UwG

v = VTE + VTG + VqG

(61)

(62)9

If we substitute into equations (61) and (62) the values according to

equations (57) to (60) and according to equations (21) and (22), we

obtain, if we limit ourselves to three series terms, the expressions

which are also valid for the kinematic flow conditions only, with the
abbreviations

g_o = gqo + 2 cos _ + i

g_2 = gq2 - cos 29

g_ = gq3 - cos 3_

f_o = fTo " i

f_l = fT1 + cos 9

f_2 = f72 + cos 29

f_5 = f75 + cos 39

(65)

9This is not valid for determining the velocity distribution on the

contour. For this, only u is needed. The different signs of UTE
indicate the velocity difference at the opposite points of the suction

and pressure side.
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which represent the total dimensionless induced velocities for the

remainder of the cascade plus the single blade. Thereby the induced
velocities are furnished to the extent that the coefficients of the

circulation and the source distribution can be determined from the

kinematic flow conditions.

4.4 Systems of Equations for the Coefficients of the

Singularity Distributions

The coefficients AO, A l, • . . and BO, B 2, • • . according

to equations (18) and (19) are determined for the cascade from the

kinematic flow conditions in the same manner as for the single profile.

For the cascade, however, we shall take as a basis the complete

kinematic flow conditions according to equations (45) and (46). For

the location of the control points we shall also use the three-quarter

chord theorem as we did in the case of the single airfoil. This implies

a hypothesis, the justification of which we shall check later on a few

examples for which exact solutions exist.

If we satisfy the two kinematic flow conditions at n control

points, we obtain 2n linear equations for the 2n unknowns

AO, A l, • . . An_ 1 and B0, B 2, . . . Bn. In the case of the single

airfoil this system was transformed into two systems of n equations

each: into one system for AO, A l, • • • An_l, and a second for

BO, B 2, . . . Bn. Both systems could be solved independently of one

another. In the case of the cascade there results generally a system

of 2n equations which only in a few special cases has to be trans-

formed into two systems of n equations each.

By substituting equations (63) and (64) into equations (45) and (46)

and satisfying the two equations thus formed at the n control points

points corresponding to q_!n)" (with v = l, 2, . . . n), weat the

obtain _ith y_v = y_4n)_ and "y' '_x(n)_sv = Ys the system of equations
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1B0 ot _v 2 sin _ n , . +
2 - YdVgq 0

B2_sin 2_Sn)- Y_vg_2_ + Bs_in 3_S n) - Y_vg_

= Ydv 0 AlgT1 +

= -K + Ysv + Bog_0 + B2g_2 + Bsg ofq 0 + B2fq2 + Bsf

(66)

The quantities Ydv and Ysv are given with the geometry of the profile.

The functions fTo' fTl' " " " and gTo' g_l' " " " can be taken from

the cascade-downwash tables (in the appendix); in addition to dependi_

on t/Z and X, they depend on the position of the control point, thus

V_
on v. The quantity K = _ = tan _ determines the direction of the

inflow and is to be interpreted as a free parameter.

The system (eq. (66)), is arranged in such a manner that the terms with

AO, AI, . . and BO, B2, . . . on the right side are, in general,

small compared to the remaining terms and may be neglected for an

approximate solution.

For the further treatment of the system according to equation (66)

we shall take the case of three control points, thus n = 3, as a basis,

since this case has proved to be particularly suitable for the cascade

calculations and the downwash tables were therefore made accordingly.

With n = 3, equatiou (66) is a system of six equations for AO, A l, A2,

BO, B2, B3. With the abbreviations
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m(3) m(v3)
qov = cot 'v - 2 sin2

= sin _(3)
q2v

q3v = sin 5_$5)

(67)10

- ' * = QOv%v Y_vgqo

' * - Q2vq2v " Ydvgq2

' * = Q3vqgv " Ydvgq3

_o -Y_v_o--Pov

(68)

YL_2 =s2v

fq0 " Ysvgq0 = R0v

-- I

fq2 Ysvgq2 = R2v

t .
fq3 " Ysvgq3 = R3v

and with v = I to 5, equation (66) obtains the simpler form

BO% v + B2Q2v+ B3Q3v= Y_v+ AoSov+ AISI_+ A2S2v vl
AoPov+ A#I_+A2p2_-K+Y_ -(B0_O_+B_2_+B3_3

(69)

(70)

lOFor

table l) :

n = 3 we obtain the following numerical values (comR_re

_i = 0 q21 = 0.8660 q31 = 0

q02 = -1.1269 %22 = -0.3287 q32 = -0.8769

q05 = -0.8040 %23 = -0.9213 q33 = 0.98e7
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By profile geometry (Ys' y_) and cascade geometry (t/Z, k) all

coefficients of the system acoording to equation (70) are fixed. The

coefficients A0 to B3 hssve then to be ascertained as functions of

K = tan _ (inflow direction). We can see from equation (70) that all

coefficients are linear functions of K. In order to eliminate the

repeated solving of equation (70), corresponding to the number of different

desired inflow directions, it is suitable to introduce this linear

dependence (as for the single blade in equation (31)) according to

A0 = AO0 + KAo_

AI = AIO + KAI_

B0 = BOO + KB0_

B2 = B20 + KB2_

B3 B30 + KB3_

(71)

and to split the equations into components free from K and involving K.
We thus obtain two systems of six equations each with v = 1 to 3-

The first system for the six coefficients AO0 to B30 describes the

translational flow parallel to the chord (K = 0, m_ = 0) and reads

AOOPOV + AIoPIv + _2OP2v = Ysv - (B00R0v + B20R2v + BsoRsv1

BooQov + B2oQ2v + B}oQ3v = Ydv + (AooS0v + AIoSIv + A2oS2v)J

The second system yields AO8 to B36 as variations of A0 to B3
for changed inflow direction and has the form

(72)

Ao_P0v + AI_PIv + A2_P2v = -i - (B0_R0v + B2:2v + B3_R3v)_

f

Bo_Q0v + B2_Q2v + Bs_Q3v Ao_S0v + AI_SIv + A2_S2v J

(73)

In the general case for staggered cascades with cambered profiles of

finite thickness, we have two systems of six linear equations each, with

six unknowns. In a few special cases considerable simplifications are

possible for the solution of the systems of equations which we shall
briefly enumerate below.
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4.4.1 Cascades with infinitel_ thin blades and arbitrary stagger.-
' = 0 for infinitely thin blades, we obtainBecause of Ydv

80v = Sly = S2v = 0 and thus also

BOO = B20 = B30 = 0 BOB = B2_ : B3_ = 0

Equations (72) and (73) are reduced to

!

AooPov + AIoPIv + A2oP2v = Ysv

Ao_Pov + AI_PIv + A28P2v = -i

thus, to two systems of three equations each.

4.4.2 Unstag_ered cascade with blades of arbitrary camber and

thickness.- Because of X = 0 for unstaggered cascades there applies

(compare later section 7.1)

g_o = gTl = g_2 : fq0 = fq2 = fq3 = 0

Thereby we obtain BO_ = B2_ = B3_ = O, and equations (70) and (71)
are reduced to

BOOQ0v + B2oQ2v + B30Q3v : Y_v

AooPo_+ A10Plv+ A20P2_: Y_v- (BooR0_+ B20R2_÷ B3@3_

Ao_Pov + AI_PIv + Ap_P2v = -i

(74)

thus, to three systems of three equations each.

4.4..3 Single profile.- Because of t/Z = for the single profile

: %1 = _2 : f--qu= fq2= f_q_: o_o

is valid.

Thus, according to equation (69), SOy = Sly = S2v = 0 and conse-

quently BOB = B2_ = B36 = O. Furthermore, we obtain, according to

equations (68) and (65)
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POv = -i Ply = cos _(3) P2v : cos _(5)

Accordingly, equations (70) and (71) are again reduced to equation (74);

now, however, with Po1 to P23 as fixed numbers, ll With these, the

solution of the last system of equation (74) reads

AO_ = 1 AI_ = 0 A2_ = 0

For the single profile, we have therefore to solve the first two systems

of equation (74 ) with three equations each. The latter do not agree
exactly with equations (29) and (32) for the single profile. The reason
is that there the calculation was on the basis of the simplified

kinematic flow conditions, equations (19) and (16); here, on the other

hand we use the complete kinematic flow conditions, equations (7) and (8).

In the numerical evaluation, however, the difference for the single

prcfile is very small.

4._.4 General case.- In the general case of the staggered cascade

with cambered profile of finite thickness, where two systems of six

equations each are to be solved, it proves to be expedient to choose a
method of successive approximation. Equation (72) as well as equation (75)

is split up into two systems of three equations each. (Compare for more

details later, section 7.2.) 12

4.9 Aerodynamic Coefficients

Below, the formulas are furnished according to which the aerodynamic
coefficients of the cascade can be determined from the coefficients of

the Singularity distributions.

4.9.1 Lift.- Equation (4) for the resultant force on a single blade

applies also for the blade in the cascade configuration if we understand

W_ to be the vertical mean of W1 and W2 according to figure 7(a).

l_he numerical values are (compaa.e table i):

POI = -i Pll = 0.9 P21 = -0.9

P02 = -I P12 = -0.1667 P22 = -0.9444

P03 = -i PI3 = -0.8533 P23 = 0"3889

12This method corresponds approximately to the one for the single
profile with the simplified kinematic flow conditions.
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A is perpendicular to the direction of W_. If we insert r from
equation (44) into equation (4), there follows

A : 2pWt nw (75)

or

From equation (4) we obtain with P according to equation (34) and with

A0 and A 1 according to equation (71)

cA = 2_ + _ A cos _

: 2_ + _ Al_ cos + + sin m (77)

Hence there results for the lift increase of the blade in the cascade

for _ = 0 the expression

IdCA] 1

: A 0) (78)

4.5.2 lILflow and outflow angles.- According to the velocity diagram

in figure 7(a) there applies for the components W t and W n of W_

parallel (subscript t) or, respectively, perpendicular (subscript n)
to the cascade frcnt

W t = U_ sin _ + V_ cos _

]W_ n = Win = W2n = U_ cos h - V_ sin

Furthermore, we have according to figure 7(a) (with W n = W_n

for abbreviation)

(79)

= Wln = W2n

22_ Wn
cot _I - cot 62 =_ sin _ =m

W n W_
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and thus

(cot _l " cot _2)sin _ = 2 L_w/W_

or, respectively, according to equation (76)

cA : 2 tz sin B_(cot _i - cot _2)

(8o)

(81)

This is the relationship between the lift coefficient and the flow

angles, which is fundamental for the cascade theory.

In addition to the angles _i' _2' and _ between W1, W2, and

W_, respectively, and the cascade front, we shall introduce the angles ml'

m2, and m_ between these velocities and the blade chord. According to

figure 7(a) there applies, because of _s = (_/2) +

x + _z = _z " (_/2)

X+_.=_.- (_/2)

ml = _i - _s_

_2 _2 _s

_ _ _s

(82)

For the blade in the cascade configuration, the angle _ between the

blade chord and the velocity W_ plays the role of the angle of attack

insofar as the resultant blade force A is perpendicular to the

direction of W_. (Compare figs. l(a) to l(c).)

Between the velocities and angles there apply the relationships to

be seen from figure 7(a).

-cot _i =

W t + _w U sin h + V cos h + Z_w

W n U_ cos _ - V= sin A

-cot _2 =
W t - _ U sin k + V cos A - L_w

Wn U_ cos h - V sin k

_I@ot + cot-cot _ = 2

W t U sin k + V cos k

W n U_ cos h V_ sin k
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Hence follows with equation (26)

t_ _ + K + (1/cos_)(_/u_)
-cot _l = 1 - K tan

tan _ + K- (i/cos %)(_/U_)

-cot _2 = i - K tan

(83)

(@)

-cot _ = (tan _ + K)/(1 - K tan _)

where, according to equations (44), (34), and (71)

(85)

U 2 U_t 2 t _ AI + K _ + AI
(86)

From equations (83) to (86) we can calculate the inflow and outflow

angles as functions of K = tan m_ after having first determined the

coefficients AO0 , AI0 , A0_ , AI_ from the systems according to

equations (72) and (73). If we have obtained in this manner _i and

there follows the velocity ratio W_W 1 from the continuity equation
according to 7

W2/WI = sin _i/sin 82
(87)

The pressure rise in the cascade thus attains, according to the Bernoulli

equation pl + _ W]2 = P2 + _2 W2' the form2

P2 - Pl sin2_l
- 1 (e_)

P W2 sin2_ 2

or, referred to the rate of flow Wn

P2 - Pl
- cot281 - cot2_2 (_)

2 W2
2 n
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In the calculations so far, the component of the translational

velocity U_ parallel to the chord was used for the formation of

dimensionless velocities. For the final representation of the results

and in the comparison of the theory with test results it is more expedient

to refer all velocities to the inflow velocity W1 or the outflow

velocity W 2. From figure 7(a) we take for the conversion

WI/U _ = (cos h - K sin _)/sin _l (89)

4.5.5 Velocity distribution.- The velocity distribution on the blade

contour is obtained from the velocity U s on the blade chord according

to equation (37) with

U s = Uoo + u = Uoo + UTE + UTG + UqE + UqG (90)

The sum of the three terms UyG + UqE + UqG was previously given in

equation (63), the term UTE in equation (20). If we divide up all

coefficients of the singularity distributions according to equation (71),

we obtain Us/U _ in the form best suited for the numerical evaluation

(with the upper sign for the upper side, the lower sign for the lower

side of the profile)

l÷Bo0q0÷B20q2÷B30gb ÷
U_

A00gT0 + Al0g.fl + A20@f2 +

K_O_
cot _ + sin _+ sin 2_)'

2 Al_ A2_ JJ
(91)

Once we have determined the coefficients BOO, B20, . . . A28 from

equations (72) and (73), we can calculate the velocity distribution

from equations (37) and (91) with the aid of the downwash tables.
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The velocity at the profile nose follows according to equation (38c)

to be

= Ao = (Ao0+ (92)

Finally, we obtain from the velocity distribution, by means of the

Bernoulli equation, the distribution of the pressure p on the contour,

in the form

-- i -- (93)

4.5.4 Special inflow angles.- If the inflow direction (that is,

K = V_/U_) for a prescribed staggered cascade is varied within sufficiently

wide limits, flow conditions with pumping effect (P2 > P_ and flow

conditicns with turbine effect (P2 < Pl) are obtained. Some special

inflow directions also result which we shall now discuss briefly.

The shcck-free inflow is characterized by that inflow angle for

which the minimu_..-pressure peak at the nose is not present. Because of

equation (38a) there applies here

K = tan _st = -Aoo/A06 (94)

For a cascade free from deflection the inflow and outflow directions

are parallel to one another, thus _l = 82 = 8_" For this cascade the

resultant blade force is zero (cA = 0). An unstaggered cascade of

sy_.netrical profiles is, for reasons of symmetry, free from deflection

when the inflow coincides with the direction of the chord (ml = _2 = _ = 0).

For a staggered cascade of symmetrical profiles this is no longer true.

On the contrary, as will be shown by the examples later, for such a

cascade there must be, for a flow free from deflection, _l _ _s

(fig. 8(a)). The value of K for the cascade free from deflection results

from cA = 0 according to equation (77)

KcA=O = (tan m_)cA=O = -

AO 0 + 1 A10

Ao_+i 2

(9_)



N

• OIQ

000000

00@0

@000

58

For an inflow parallel to the chord (ml = 0) a deflection of the

flow appears for the staggered cascade of symmetrical profiles (fig. 8(b)).

In this case we obtain, because of _l = 0 according to equation (82),

tan k = -cot _l' and thus equation (83) yields

K = tan a_ =-(2_/U_)cos k

With Z_w/U_ according to equation (86) there follows

K- 2t %0+_A1 (96)

__i (Ao IAI_) +_A__i2 t P +3 cos

The remaining aerodynamic coefficients for these particular flow states

result by substitution of the given K-values into the formulas given

above (equations (83) to (91)).

9. CALCULATION EXAMPLES

We shall test the accuracy of the calculatlon method first on

examples for which exact solutions also exist.

9.1 The Unstaggered Plate Cascade

The simplest cascade is the unstaggered plate cascade with A = 0

and _s = 90° for which R. Grammel (ref. 21) indicated an exact solution

which N. Scholz (ref. 22) represented in detail. The exact solution

yields for the efficiency factor _ (ratio of the lift increase of the

blade in the cascade configuration to the lift increase of the single

blade)

dCA/_dCAh = 2 t tanh(__Zh

and for the ratio of the outflow angle to the inflow angle

cot _2/oot_i = e-_It

(97)

(98)



39

Q@

••@@

@
•o•@

The approximate solution yields according to equations (36a) and (78)

1
= A013+ _ Alp (99)

and according to equations (83), (84), and (86)

cot P2

cot PI

i t2
(loo)

For the coefficients of the singularity distributions there applies
according to equations (72) and (73)

AO0 = AIO = . . = 0 BOO = B20 ..... 0

BOp : B2p .... = 0

and

A0_P0v + AipPlv + A2pP2v = -i

with

Pov = f_0 Ply = f{l P2v = f_2

according to equation (68) for the determination of AO_ , Alp , and

A2p. The results of the calculation for three control points (n = 3)

are given in table 5.

Figure 9 shows the efficiency factor a (curve Ps = 90°) as a

function of the pitch ratio; agreement of the approximate calculation

with the exact solution is very good. Figure lO contains the result

for the inflow and the outflow angles; here also the agreement of the

approximate solution for three control points with the exact solution

is excellent. In table 5 the position of the center of lift (aerodynamic

center) was given also; its x-value we denote by XNeut r. For the single

XNeutr _plate the aerodynamic center lies at the point _ = . With

narrowing spacing it shifts considerably forward. Finally, figure ll
shows the circulation distribution over the plate chord for several

pitch ratios. The approximate solution agrees again perfectly with the
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exact solution. Because of the narrow spacing _ = 0.5 the rear half

of the plate contributes almost nothing to the lift.

5.2 The Staggered Plate Cascade

For the staggered two-dimensional plate cascade, also, there exists

an exact solution (on the basis of the conformalmapping, compare

refs. 15 and 22), although not in closed form. The results of the

approximate calculation for several blade angles _s are contained in

table 6. Figure 9 shows the efficiency factor. Here again, the agree-

ment of the approximate solution for three control points and the exact

solution is excellent.

On the whole, since these results of the approximation method are

so satisfactory for the cascade also, good calculation accuracy may be

expected as well in other cases for which no exact solutions exist.

5.5 Parabolic Cascade

Whereas no difference between positive and negative angles of

stagger k exists for the plate cascade, we find that generally, for

cascades with cambered profiles, the arrangements with _ < 0

(0 < 6s < 90o ) have turbine effect} those with k > 0 (90o < _s < 180°),

pump effect. The following results, calculated for the entire R-range,

give a first survey of the characteristic differences of the aerodynamic

cascade coefficients for pumping and turbine cascades.

As the simplest case of a cascade with cambered profiles, we shall

treat a cascade of infinitely thin parabolic profiles. With f as the

height of camber, the equation of the mean camber line is given by the

expression for Ys(X) in section 3.5.2.

For the parabola as a single profile, the lift coefficient is

(ioi)

in perfect agreement for the exact and the approximate solutions. The
4_f

angle of the shock-free inflow is m_st = 0 with CAst = 7" For zero
-2f

lift there applies _1(_CA=O _ 7 °
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For the parabolic profile in the cascade, the camber was based on

the value _ = O.1. Thus, the values according to table 7 result for

the inclination of the mean camber line at the three control points.

Table 8 contains the coefficients of the singularity distributions. Of

the extensive results, we shall give only those for the total lift.

Figure 12 shows the coefficients for the lift increase. For the unstag-

gered parabolic cascade, agreement with the plate cascade exists, whereas

the lift increase for higher k-values is considerably smaller than for

the plate cascade in the case of the parabolic cascade with pumping

effect, and considerably larger in the case of the parabolic cascade with

turbine effect. Figure 13 contains the results for the zero-lift dlrec-

tion. For the single blade = , m_ CA=O = -_- = .

valid. For the other limiting case of the blades spaced very closely

I_= 0), we have the blade-congruent flow with a zero-lift angle which

is equal to the angle 5H of the end tangent with the chord:

4f _ 0.4 = 21.8 °. For finite values of the spacing,:h -

the values of (_)CA=0 lie approximately between these limits for all

angles of stagger. Figure 14 shows the outflow angle =2 as a function

of the inflow angle _i' For the limiting case of the very closely

spaced blades (blade-congruent flow_ streamline theory), the outflow

angle - independently of the inflow angle - is equal to _ (thus

-_2 = 8H = 21"8°)' For spacings of finite magnitude, the outflow angle

also depends only slightly on the inflow angle, particularly in the case

of narrow spacing. However, the difference compared to the blade-end

tangent, the so-called exaggeration angle (ref. 27) is considerable, for

instance, approximately 9° for _ = 1.0.
I

5.4 Cascade of Blades With Symmetrical Profiles

Furthermore, an extensive methodical system of cascades of blades

with symmetrical profileshas been investigated (profile NACA 0010, cf.

sec. 5.5.4). Such cascades are excellent for fundamental investigations

due to the fact that the angle of stagger need be changed only in one

direction, in the same manner as for the plate cascade and in contrast

to cascades of cambered blades; there exists no difference between positive

and negative stagger angles. This cascade shows, therefore, the thickness

effect in a particularly clear form. Twelve arrangements were calculated,
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namely the blade angles _s = 9003 120°' and 190 ° for the pitch ratios

t
-- = 0.5, 0.7_, 1.0, and 1._. We shall give only a very limited selection

from the extremely voluminous results. Figure l_ shows the efficiency

factor _ as a function of _s and of t/Z. (For comparison, the

values of the plate cascade according to figure 9 have also been plotted. )

As in the case of the single airfoil, the thickness has only a very slight

influence on the lift increase. A particularly remarkable result is

obtained for the zero-lift direction also contained in figure l_. It is
identical with the inflow and outflow direction of the cascade free from

deflection. Whereas an umstaggered cascade of symmetrical profiles has

the effect of being free from deflection for an inflow parallel to the

chord, a staggered cascade of such profiles gives, for an inflow parallel

to the chord, a deviation in such a manner that the direction of outflow
is turned from the direction of the chord toward the cascade front. The

flow is free from deflection only when the cascade is approached by the

flow at a certain angle with respect to the chord. For narrow spacing

and considerable stagger, values (_)CA=O of 3° to 4° are attained.

The values of (m_)CA=O are probably about proportional to the profile

thickness. Information regarding thls effect may also be found in refer-

ence 23 by B. Eckert.

Figures 16 to 24 contain a small selection from the pressure distri-

butions. It can be seen from the added velocity triangles whether we

deal with pumping or with turbine cascades. For the unstaggered cascades

_s = 90o the pressure variation is of a similar nature as in the case

of the single profile. However, the lift loading of the blade in the

cascade lies closer to the profile nose, compared to the single blade.

The entire rear half of the blade does not contribute anything to the

lift, particularly in the case of narrow spacing. 13 For the staggered

cascade (_s _ 90° ), the pressure variation, for an inflow parallel to

the chord (ml = 0), is different on both sides of the blade. The larger

negative pressure lies close to the blade nose. Narrow spacings even

cause overlapping of the pressure distribution on the upper and lower

sides on the rear part of the blade. If the direction of inflow deviates

from the direction parallel to the chord, a large negatlve-pressure peak

is always produced at the profile nose. The positive ml -values now

13Much more numerous results for unstaggered cascades, including

the loss coefficients (also for other profile thicknesses and for cambered

profiles) have been presented by L. Speidel (ref. 3).
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correspond to pumping cascades, the negative _l-values, to turbine

cascades. The differences in the pressure distribution are striking,

particularly on the rear part of the blade. For the pumping cascades

the loading on the rear part of the profile increases with increasing

angle of attack; whereas for the turbine cascades, particularly in the

case of narrow spacing, the overlapping of the pressure distributions

already present at _l = 0 is still increased. The rear parts of the

blades of turbine cascades (particularly for narrow spacings and large

stagger) ma_e, therefore, a negative contribution to the lift. For

equal total lift we obtain, therefore, larger negative-pressure peaks

on the turbine than on the pumping cascades.

5.5 Cascades of Blades With Cambered Thick Profiles

Finally, we shall report a few results from a voluminous methodical

system of cascades with blades of cambered thick profiles NACA 8410.

(Cf. sec. 3.5.5.) 14 In this case, the influences of the thickness and

the camber are superimposed in the cascade. The blade profile selected

here, of 8-percent camber and lO-percent thickness, is usable both as

a turbine and as a pumping cascade, as has been shown by investigations

on loss coefficients. T_enty different arrangements of this profile

in the cascade configuration were investigated: the blade angles _s = 30o

and 60 ° with turbine effect, the blade angle _s = 90o and the angles

8s = 120° and 150 ° with pumping effect at pitch ratios 0._, 0.75, 1.O,

and 1.5. The complete calculation for a cascade from this series maybe

found in section 7.2; table 9 contains the coefficients of thesingularity

distributions. Figure 25 shows the results for the efficiency factor

(relative lift increase) as a function of the reciprocal pitch ratio and

of the blade angle_ for comparison, the variation for the plate cascade

has also been given. For extremely large stagger, corresponding to

_s = 30o and l_O °, large differences between the pumping and the turbine

cascades, and also compared to the plate cascade, appear. Figure 25

contains, in addition, the variation of the lift coefficient for _ = O.

For cambered profiles this value is more suitable for characterizing the

lift curve CA(m_) than the value given for the former examples, m_

for cA = O, because the latter frequently lles in the region of separated

flow, for cambered profiles. Figures 26 to 30 show for all cascades of

this systematic family the inflow and outflow angles. The so-called

l_The_L results of this section are taken from an unpublished report

by L. Speidel (ref. 24) which also contains extensive results on loss

coefficients.
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exaggeration angle 5, that is, the angle between the outflow direction

and the tangent to the mean camber line at the t_ailing edge, is given

in the range of the inflow angles _l for which no significant flow

separation occurs (according to the boundary-layer calculations not given

here). For wide spacings this angle exaggeration always has higher values

than for narrow spacings. We note, however, that the amount of 8 is,

in addition, considerably modified by the friction effect. Furthermore,

we see from figures 26 to 30 that for turbine cascades _s = 30o and 60°

the range of permissible angles of attack ml of the cascade is con-

siderably larger than for pumping cascades I_s = 120 ° and l_0°).

Figure 31 shows the velocity distribution along the profile contour

for the calculation example according to section 7.2 for several K-values.

A comparison with figure 6 shows that, particularly on the suction side,

the pressure distribution in the cascade deviates considerably from that

on the single profile. In figures 32 to 98, finally, a large number of

pressure distributions has been compiled. For the pumping cascades,

usable pressure distributions result in a range _l of the inflow

angle ml' referred to the blade chord, which amounts at most to about

An.1 = 20°_ for turbine cascades, in contrast, up to Lk_1 = 70°. This

is in good agreement with experience, according to which pumping cascades

in general are much more sensitive to variations of the inflow angle
than are turbine cascades.

We shall omit giving more details on the pressure distributions

since the latter represent, primarily, the starting point for the calcu-

lation of the loss coefficients which we shall not treat in this report.

6. COMPARISON WITH TEST RESULTS

In conclusion, we shall give, to a limited extent, a comparison of

the theoretical results with measurements, with the aid of the pressure
distribution on the profile since this is rather sensitive to variations

of the geometric parameters and of the inflow angle, and also is rela-

tively little influenced by the viscosity effects (neglected in the
theory) as long as no strong separation occurs. The pressure-distrlbutlom

measurements on two-dlmenslonal cascades with the blade profile NACA 8410

have been taken from extensive systematic measurements of N. Scholz.
The two-dimensional cascade tunnel used for the measurements has been

described in detail in references 1 and 2_.15 The following parameters

19Compare also reference 26, especially figure 1 on page 130 of

that report.
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could be varied: the pitch ratio t/Z, the angle of stagger k = _s - 90°'

and the inflow angle _l" The length of the blade chord was Z = 200 am,

the height of the blade h = 600 mm. The average blade was provided, in

its center section, with 28 pressure-tap orifices distributed over the
circumference. Particular care was used in order to obtain a two-

dimensional flow. For this pur_se, the side walls of the cascade tunnel
were provided with a suction device (porous walls). The outflow velocity

was for all tests approximately W2 = 40 m/s_ the Reynolds number

referred to the outflow velocity and the blade chord was therefore

W2Z/v _ 6 x l05 and the Mach number relative to the sonic velocity c

was M2 = W2/c = 0.12; the flow showed, therefore, incompressible behavior.

In figures 99 to ll2, a small selection from the pressure-dlstrlbution

measurements has been compared with the theoretical results above_ table lO

contains the pertaining lift coefficients cA and outflow angles 82.

Figures 99 to 104 show, for constant spacing (t = lJ, the variation of
k" I

the pressure distribution with the angle of attack ml' for the turbine

cascade with 8s = 60o and for the pumping cascade with _s = 120°"

No separation occurs for the turbine cascade; whereas the PoUmplng cascade
shows, on the suction side, a slight separation at ml -- 15 and a

somewhat more marked one at _l = 20°" The agreement between calculation

and measurement is excellent for the turbine cascade_ it is not quite as

good for the pumping cascade, because of this separation, but on the

whole still quite satisfactory. Figures 105 to ll2 show the variation

of the pressure distribution with the pitch ratio t/_ for constant

angle of attack _l' for a series of turbine cascades with _s _ 60o

and pumping cascades with _s = ]20o" Here, the agreement of the

calculation with the test is very good for both turbine and pumping
cascades; particularly, if one takes into consideration that the theo-

retical pressure distributions do not contain the friction effect.

7. DETAILS OF THE CAIC%W_A_ION

7.1 Calculation of the Tables of Functions for the Induced Velocities

The induced velocities UTG , VTG , UqG , and VqG of the remainder

of the cascade must be calculated numerically as functions of the pitch

ratio t/Z, of the angle of stagger k, and the relative coordinate x/Z

along the chord. These velocities are defined by equations (55) to (56)
with the influence function F according to equation (50). Since we

obtain for k = 0 also J(F) = 0
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is valid• In addition, there exist, as can be easily determined, the

following symmetry relations

vrQ(-),)= v7a(x)
I

vqa(-_,)-vqo(;_)J

(i05)

Thus it is necessary only to calculate the downw_sh functions for

positive stagger angles _.

r(x)
with q)'

tions (_7) to (60), the formulas for the downwash functions

If the series expressions according to equations (18) and (19) for

and q(x) are introduced into equations (_3) to (_6), one obtains,

as the _-value pertaining to x', by comparison with equa-

Z _I (p,- cot -_- J(F)d_'
gTo t '=0

1

Z _ sin (P'J(F)d_'_i = -7 ,=o

g72- t '=osln(S;')a(V)d_'
e • • • , • • • • • • • • • •

_i (p,z cot--g._(F)d_'
fTo = - _ '=0

(io4)

1

_ ! _ sin(i_' )R(F)d_'f72 = t '=0

1

- z _ sin @'R(F)a_'fTl = _ '=0
• (_.o9)
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gqo = _ '=0 ot _- - 2 sin q_ R(F)d_'

l sin(_')R(F)a_'gq2 = _ '=0

,1

#_ sin(3_' )R(F)d_ 'gq3 = _ '=0

(106)

- --_/i ot _' - 2 sin q_ J(F)d_fqO = t '=0 2

i

_ Z _ sin(_')J(F)d_'fq2 = _ '=0

1

fq3 = - it _,=0 sin(3_')J(F)d_'

The influence function F depends, according to equation (90), on

(_ - _' )Z/t and A. Its real and imaginary parts are 16

(io7)

R(F)= -

(lo8)

i i , i

16Compare reference 4, especially equations (16a) mud (16b) on

page 29. There one finds also in the table 1 on page 30 the numerical

values of R(F) and J(F) for (x - x') = 0 to ® for angles of
t

stagger A = 0°, 19°, 30°, 49°j 60°, 79°, and 90°.
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J(F)=
sin _ sinh(_ x K-x'.

cosh _ x _ x'

cos k - cos k sin _ x _ x' sin A

cos x - x' _)_)- cos(2_ K sin

(lO9)

We need calculate only the functions _0' _i' " " " '

fyo' fTl' " " " of the circulation distribution. The functions

gqo' gq2' " " "' fqO' fq2' " " " of the source distribution then

result very simply according to the relationships following from
equations (104) to (i07)

gqo = -fTo + 2f71

gq2 = -f72

fqO= _o - 2971

:-f 2 fq2= g_2

%3 -f73 gq3 -f_3 fq3 _3

Because of equations (102) and (103) there applies for _ = 0

and for arbitrary R-values

_o(-X)= -_zo(X)

_l(-X) =. -g_l (_,)
,m

fTo( -_') ="_o(_)

_7].(-_,) =: f_l (_)

gqo(-S) : gqo(S)

gq2(-),) :..gq2(X)

_qo(__) " .fqo(_ )

fq2(-_) : ): "fq2 (_'

(no )

(ill)

(Zl2)
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The downwash functions were calculated for pitch ratios _ = 0.5,

0.7_, 1.0, 1.25, 1._, and 2.0 and for stagger angles _ = 0°, l_°, 30°,

45 °, 60°, and 75°. The Simpson rule, based on 20 points, served for

calculating the integrals in equations (104) and (105). The results

have been compiled in the cascade downwash tables in the appendix.

7.2 Example for the Determination of the Coefficients in the

Singularity Distributions and of the Aerodynamic Coefficients

For clarification of the entire calculation process, we shall fUlly

calculate here, as an example, a staggered cascade with cambered blade

profiles of finite thickness. This is the most general case where no

simplifications occur in the solution of the systems of equations for

the coefficients of the singularity distributions.

The calculation procedure consists of four steps:

I. Determining the coefficients of the systems of equations

(equations (72) and (73))

2. Solving these systems of equations for the coefficients

of the singularity distribution

3. Calculating the aerodynamic coefficients

4. Calculating the velocity distribution along the blade

contour.

The first step, tables ll and 12, requires, aside from writing

down the fixed values qov' q2v' q3v (compare also table 1), deter-

mining the slope of the mean camber line and of the thickness distri-

bution at the three control points. Then the values of the lO downwash

functions at the three control points have to be taken from the downwash

tables of the appendix (columns 8 to 17 in table ll), and with them the

coefficients Q0v' " " "' P0v' " ' "' Roy , . .., SOy , . . . have

to be calculated according to equations (68) and (69) (table L2).

The second step includes writing down the systems of equations,

equations (72) and (73), according to table 13, and their solution,
table 14. A method of successive approximation is used. Both systems

are split up into two systems of three equations each. For the first

system of equation (72) one mayuse the method of first solving the

first three equations with the assumption BOO = B20 = B30 = 0. The

values of A00 , Alo , A20 thus obtained are substituted Into the right
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sides of the last three equations of this system, which now yield

BOO , B,0 , BS0 (first approximation). With these values one enters

into the right sides of the first three equations and obtains improved

values of AO0 , AI0 , A,O (second approximation), etc. This method

converges very rapidly in all cases. (In table 14we had to calculate

only up to the third approximation.)

In the third step, the aerodynamic coefficients are calculated

(inflow and outflow angles, lift coefficient, pressure gradient in the

cascade, inflow and outflow velocities). Equations (83) to (89) are

available for this purpose. Table 15 contains the results. The contour

velocity, resulting in the fourth step from equations (37) and (89) to

(91), from which follows the pressure distribution on the blade according

to equation (93), have already been shown in figure 31.

8. S_Y

A simple method for calculating the frlctionless incompressible

flow through a two-dimensional cascade is described for the so-called

second main problem where the entire blade and cascade geometries are

prescribed and the aerodynamic coefficients and the pressure distribu-

tion are desired. The calculation method is set up in such a manner

that each geometric parameter(pitch ratio, stagger angle, and blade

profile) can be varied independently of the other parameters. The

method represents a transfer of the theory of the slngle airfoil,

according to W. Birnbaumand H. Glauert, to the cascade_ thus a singularity

method where every cascade blade is replaced by continuous vortex and
source-sink distributions which are expanded into a series, according

to H. Glauert. For the circulation and the source-sink distributions,

there result two coupled integral equations whose solution, with the

aid of the three-quarter-chord theorem, may be reduced to the solution

of two systems of linear equations. The coefficients of these systems

of equations are formed from the dimensionless induced velocities of
the cascade which depend on the pitch ratio and the blade angle of the

cascade. This induced velocity field of the cascade has been calculated

universally (cascade-downwash tables) so that, for a prescribed cascade,

essentially only two systems of six linear equations each have to be

solved. Solutions according to this approximation method for the single

profile and for the plate cascade agree well with the two known exact

solutions. Furthermore, numerous cases have been calculated for cascades

with a parabolic profile, with a sy_netrical NACA profile, and with a
cambered NACA profile. Measured values of the pressure distributions on
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the blade, which have been taken for the case of the cambered NACA profile,

sho_ good agreement with the calculated distributions for pumping as well
as for turbine cascades.

Translated by Mary L. Mahler

National Aeronautics and Space Administration
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TABLE 3

SLOPES OF THE TANGENTS AT THE THREE CONTROL POINTS FOR THE

NACA 0010 AND 8410 PROFILES

57

Number of

control

p• int,

Y

1

2

3

Relative

distance

from the

lead ing

edge,

xv/Z

3
y_: o.25o

:o.583
12

= O. 917

NACA 0010 profile

Tangential slope

of the thickness

distribution,

NACA 8410 profile

Tangential slope

of the thickness

distribution,
!

Ydv

0.0210

-.0660

-O.lO55

I

Ydv

0.0156

-.0635

-.1024

Tangential slope

of the mean

camber line,

Y_v

o.150

-.lO5

-.201

TABLE 4

COEFFICIENTS OF TEE SINGULARITY DISTRIBUTIONS FOR THE

NACA 0010 AND 8410 PROFILES AS SINGLE PROFILES

calculated from the simplified kinematic flow conditions,

equations (15) and (16); b calculated from the complete

kinematic flow conditions, equations (6) and (7).

Coeff ic ient

A00

AI0

A20

_o
B2

B3

NACA 0010 profile

a

O

O

O

0.0716

.0242

- .0260

b

O

0

0

O.O7OO
.0275

-.o187

NACA 8410 profile

a

-O.0532

.3229

.o8_

O.O728
.0180

-.O278

b

-0.0538

.3472

.1153

0.0713
.0204

-.0213
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TABLE 6

RESULTS OF THE APPROXIMATE CALCULATION

FOR TEE STAGGERED PLATE CASCADE

Approximate Calculation for Three
Control Points (n = 3)

59

Blade angle

_s

60°

45°

30°

Pitch ratio,

t/_

0.5
-75

1.0

2.0

oo

0.5
.75

1.0

2.0

O0

0.5
.75

1.0

2.0

oo

AOB

0.6270
.74z5
.8203
•9477

i

0.7302
.8131

.8926

.9891

1

0.9207

.9151
1.0245

1.0_55
i

Coefficients

AIB

-0.5168

-.4102

-.3015

-.o%8
0

-O.5568

-.3176

-.1632

-.o139
0

-0.5679

+.0300

.2015

.i023

O

A28

-0.1224

-.0384
-.0034
+.0026

0

-0.099o
+.0573

.0629

.0083
0

-o.oo9o
+.3350

.1788

.0071
0

Efficiency
factor of

the lift

0.359

.536

.670

.8%
1

0.452
.654
.811

.982
1

0.637

.928

1.125

1.097
1
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TABLE 7

SLOPE OF THE MEAN CAMBER LINE OF THE PARABOLIC

PROFILE WITH THE CAMBER

f
_- = 0.i AT THE THREE

CONTROL POINTS

Number of control point, 1
V

Relative distance, 5/12

XV/Z

!

Slope, Ysv 0.2

2 3

7/12 ll/12

-0.0667 -0.3335

1

-0.4
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T_

SOLUTION OF THE SYSTEMS OF EQUATIONS OF TABLE 13

BY SUCCESSIVE APPROXIMATION: NACA 8410 _KADE

PITCH RATIO _ = 0.75,PROFILE,

BLADE ANGLE _s = 120°

I

Coefficient

AO0

Alo

A20

BOO

B20

BS0

AO_

Alp

A28

1st approximation

-o.0455

.2578

.0989

0.0735

.0211

-.0218

0.7232

-.4652

-.0595

-0.0374

-.0037

0.0165

2nd approximation

-o.o885

.3169

.1219

0.0702

.0220

.o184

0.7429

- .49el

- .0498

-0.0379

-.0038

0.o166

3rd approximation

-o.0875

.5153

.]e13

o.o7oi

.0220

-.0184

o.7431

-.4925

-.0499

-0.0579

-.OO38

0.0166
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TABLES OF THE RESULTING DOWNWASH FUNCTIONS ACCORDING TO EQUATION (65) FOR THE THREE C0_OL FO_fS

Ss, x, I_ t/z = 2.o t/_ = 1.5 t/_ = 1.25

_o__,_,i_ lO3_o11o5_;1_o3_ lO3q3lO3_olO3_ io3_ 1o3_&Io3_,3"lO5_ lO3_ :1o3_i"'io5_" lO_3 io_4o

_-_ -1,001 _9 -_8 .1,OO2 2,100 -i,00_ 589 -582 -1,005 2,174 -1,007 619 -615 -l,009 2,2_

90 0 _-_ -1,151 -185 -994 483 765 -1,226 -195 -1,030 483 856 -1,520 -207 -i,065 485 905

ii -1,250 -914 545 168 -978 -1,418 -971 315 195 -524 -1,973 -1,029 286 198 -477

_-!-1,0Of 945 -9_2 -i,O01 2,087 -1,002 976 -974 -1,005 2,153 -i,004 607 -60_ .1,006 2,218
12!

105 4_ -1,2o3 -i,020 819 -i,_ -_5 -1,0_ 4_ 681or Z15 -1,i16 -181 -987 7D_ -192 485

75

-1,224 -905 348 187 -585 -i,38_ -907 519 191 -552 -1,526 -i, 007 295 199 -_88

-I,000 526 -526 I-i,000 2,052 .i,000 9_8 -548 -I,000 2,097 -i,000 570 -570 -999 2,1_0

o_r0 ±50 _-_ -1,070 -175 -970 482 720 -1,129 -183 -991 48_ 764 -1,190 -190 -i,015 481 809
6O

ii -1,146 -878 562 185 -610 -1,267 -919 5£0 185 -565 -1,586 -992 517 185 -518

_-- -1,0OO 9O2 -905 -999 2,0O4 -998 906 -9O8 -996 2,011 -994 512 -516 991 2,020
12

135or f49 -1,005 -167 -946 481 671 -i,017 -168 -_8 480 681 -1,055 -170 -992 _79 699

45
-1,026 -858 584 185 -651 .1,080 .848 374 178 -617 -l,l_ -865 558 172 -575

_-- -i,000 476 -476 -999 1,951 -997 460 461 -i,000 ii,917 -999 _5 _9 -992 1,886
12

or190 ±6O _ -935 -199 -92O -481 618 -895 -153 -905 48O 587 -89_ -148 -886 479 558

50 l-!l -8@0 -794 411 185 -706 -828 -770 421 178 -713 -817 -752 425 168 -668
12

-I,000 455 -455 -i,000 1,909 -1,001 418 -_19 -i,001 1,856 -1,002 580 -581 -i,002 1,762

169

or ±75 _-_ 1878 -192 -900 4@0 575 -780 -159 -865 _8_ 901 -677 -127 -829 482 424

19 ii -749 -797 455 185 -769 -1,941 -69_ -_74 186 -8_ 9 -340 -651 515 186 -925
12

_/Z = 1.0 _/_ - 0.75 tl, = o.9

_s, .

i_2 -1,008 68_ -670 -1,019 2,572 -i,035 794 -776 -1,045 2,62_" .1,118 1,0_9 .1,011 -i,i_5 ),256

90 0 _-_ -i,£76 -228 -i,129 _89 1,021 -1,778 -269 -1,2_7 _00 1,241:-2,457 -562 -i,_67 _59 1,7_

ii -1,830 -1,122 242 210 -41_ -2,271 -1,29_ 171 2£0 -31_ -5,252 -1,680 )6 519 -1_9

662 -665 2,5_2 -1,025 i 770 -796 -1,055 2,56_ -1,091 1,023 -985 -l,ll0 3,158-1_009

io5

or _i 9 _-_ -1,4_2 -222 -i,ii0 _86 989 -1,718 .260 -1,227 49_ 1,19_ -2,572 -5_0 -1,918 -_28 1,67_

75

-1,768 -1,095 252 205 -_19 -2,209 -1,298 178 2_i -5 I- -5,152 -1,638 42 305 -145

_-- -997 611 -610 -998 2,219 -999 697 -695 -1,000 2,39_' -1,015 918 89_ -i,0_2 2,_5
12

120

or _50 _-_'-1,298 -20_ -i,051 480 895 -1,957 -2_ -1,158 479 1,070 -2,122 -31_ -1,579 _9_ 1,497
6O

_4 -1,592 -1,018 276 168 -449 -1,977 -i,I_5 205 I 2,016 -3_ .2,806 -1,4_ 65 267 -165

3__ _986 550 -557 9@0 2,0_6 -961 981 -5_ -957 2,1_5 -90_ 74_ -7_ 6 -9_ 2,39_
12

135 __or *45 -i,08_ -175 -963 474 759 -1,2_4 -191 -998 461 895 -1,716 -29O -1,149 455 1,217

45
ii -1,508 -899 52_ 161 -_91 -1,654 -990 -249 148 -547 -2,300 -1,238 I01 196 -177
12

3- -98_ 425 -4_5 -975 1,S_5 -9_ 4_9 -490 -914 -1,7_ -776 51_ -581 -78_ 1,80o
121

or 160 -799 -159 -897 47_ 522 -792 -if0 -815 -4_ 952 -1,196 -165 -810 ; 555 867

30 ii; -902 -738 40_ 136 -575 .1,186 -768 _16 76 -_/_9 -1,651 -918 _1 98 i -1@6
la

-i,00_ 510 -)ii -i,004 1,624 -986 197 -228 -950 i,_81 -697 2_ -_i_ -_ 1,16_

or169 *75 -_ -48_ -i0_ -761 48_ 278 -iii -5_ -61m 4_ 7 -682 -59 _ 251 60)

i_ ii -222 -929 _58 156 -856 -800 -_85 £18 -69 -167 -@06' -_6 171 -5_ .-287
12

_S _rbitrary t/_ .

1o3:_o zoSt_z zoSt_a 1c3f_5 zo)s_o

-i,000 9O0 -500 -i,000 2,000

-_,-I,00O -167 -_4 482 667

-i,000 -8_3 589 189 -667
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(a) Velocity diagram.

(b) Cascade.

(c) Blade with pressure distribution.

Figures l(a)to (c)

Main symbols on the blade cascade: a blade of the cascade; b cas-

cade front or direction of cascade front; c mean camber line;

d pressure side; e suction side; Z length of blade chord;

t spacing; k angle of stagger (negative, since shown as a turbine
cascade) ; _s = 90o + k blade angle; x coordinate in the direc-

tion of Z; y coordinate perpendicular to the direction of Z;

Pl staticpressure far in front of the cascade; P2 staticpres-

sure far behind the cascade; p(x) staticpressure along the blade

contour; _i inflow angle; _2 outflow angle; _= angle of the

translational velocity W_ with respect to b; U. component of

W® in the x-direction; V= component of W= in the y-direction;

W 1 inflow velocity far in front of the cascade; W 2 outflow veloc-

ity far behind the cascade; A lift(resultantforce on a blade in

frictionless flow) with the components; T parallel to b; and
N perpendicular to b.
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(a) Blade profile.

(b) Mean camber line.

(c) Representation of the mean camber line by a vortex distribution.

(d) Uncambered profile (thickness distribution).

(e) Representation of the thickness distributionby a source distribution.

Figures 2(a)to (e)

Subdivision of a profile intomean camber line and thickness distribution

according to equations (I)and (2). x, y, _, W_, U®, and V. as

in figures l(a)to l(c); a blade chord; Ys coordinate of the mean

camber line; Yo coordinate of the upper side of the blade;

Yu coordinate of the lower side of the blade; Yd coordinate of the

uncambered profile (thickness distribution)in the y-direction;

d maximum thickness of the uncambered profile; f maximum

displacement of the mean camber line (camber); _ angle between

W and a; 7(x) vortex distribution(circulationperunitlength);

and q(x) source distribution(plus sign for sources, minus sign for
sinks).



Og

°_oo

@@OO00

0@00

O00O Y

o)

=X

Ys(X) /

b) Y

U_o

-Yd + dd-_ dx
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(a) Mean camber line profile (firstcondition).

(b) Uncambered profile (thickness distribution, second condition).

Figures 3(a)and Co)

On the derivation of the kinematic flow conditions, x, y, U=, V=,

W® as in figure i; a mean camber llne with the ordinate Ys(X);

b cascade front; c cascade-outflow plane; d uncamberedprofile

with the ordinate Yd(X); and q(x) source distribution.
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Figure 4. - Thickness distributionand contour-velocity distribution

for symmetrical approach flow for the NACA 0010 profile as a

single profile. (Solidcurves for approximation according to equa-

tion (40)and to equations (37)and (38), dashed curves for actual
variations.)
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Figure 5.- Thickness and camber distributionfor the NACA 8410 pro-

file. Solid curves for approximation, dashed curves for actual
variations.
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W apFroach-flow velocity; liftcoefficient cA and angle-of-

attack parameter K = tan 0% = V,/U,o according to:

-7.3°
_a@ (zero

nft)

cA 0

K -0.130

0 o
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0

2 °

(shock-free

inflow)
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4° 6o 8o I0o 12°
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(a) Velocity diagram.

Co) Cascade.

Figures 7(a)and (b)

Velocity diagram for the staggered two-dimensional cascade, a, b, Z,

t, and k are positive since drawn as a compressor cascade. _s,

_i, _2, _, W , U_, V_, W I, and W 2 are the same as in

figure i. Furthermore, c is chord; _i is angle between c and

Wl; _2 is angle between c and W2; W n is component of W_

normal to b; W t is component of _V tangential to b; and -*Aw is

induced velocity parallel to b far in front of the cascade and far

behind it, respectively.
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(a)

(b)

Cascade free from deflection (with W 1 parallel to W2, _1 > _s'

and pertaining angle of attack (G=)CA=0 according to equation (95)).

Cascade with inflow parallel to the chord (deflection toward the
cascade front).

Figures 8(a) and Co)

Staggered cascade of symmetrical profiles, a

front; c chord; W 1 inflow velocity; W 2

_I inflow angle; _2 outflow angle; and

between c and b).

profile; b cascade

outflow velocity;

_s blade angle (angle
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Figure 9. - Dependence of the efficiencyfactor _ for the lift

hucrease, according to equation (99), on the pitch ratio t/Z for
the flat-platecascade, a flatplate; b cascade front; Z length

of blade chord; t spacing; #s angle between chord and b;

W® translational velocity; and _® angle of attack.
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Figure 12.- Dependence of the efficiency factor _ for the lift

increase according to equation (97) on the pitch ratio t/Z for
f

parabolic cascades of the camber ratio _-= 0.I compared to the

results for plate cascades. (Symbols as in figure 2(b); for plate

cascades, the same variation results for _s = 30o and 150 °, and

for 60° and 120 °, respectively.)
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Figure 13.- Dependence of the zero-lift angle on the pitch ratio for

parabolic cascades with the camber ratio f- 0.I for various
=

blade angles _s" a value o5 the single blade; b value for blade-

congruent flow; other symbols as in figure 2(b).
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Figure 14. - Dependence of the outflow angle _2 on the inflow angle
f

_i for parabolic cascades with the camber ratio _-= 0.i for

various blade angles _s and pitch ratios t/Z. a value for blade-

congruent flow; 6H trailing-edge angle; other symbols as in

figures 7(a) and (b).
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cascades of blades with NACA 0010 profiles. (Symbols as in

figure 2(b); solid curves for NACA 0010 profile, dashed curves for
plate cascades, for comparison.)
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Explanatory sketch to figures 16 to 24
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Figure 16.- Ps = 900; Figure 17.- _s = 900;

_i = - 15°" el = 0°"

Figure 18.- _s = 900;

_I = 15°"

Figures 16 to 24

Pressure distributions on the blade contours for cascades of blades

with NACA 0010 profiles. Curve a for pitch ratio + = 0.5;

curve b for pitch ratio t = 1.0; solid curves for the upper side

c of profile; and dashed curves for the lower side d of profile.

t = 0.5; the
(The cascade arrangements sketched apply for _-

velocity diagrams apply for both pitch ratios.)
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five to the value of the single blade), accordinq to eqtmtion (97),

and of the liftcoefficient (CA)_: 0 aqainst the reciprocal pitch

ratio Z/t for various blade angles #s = 90o + k for cascades of

blades with NACA 8410 profiles. (For comparison, the variation
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Figure 31.- Velocity distributionon the blade contour for the calcula-

tion example treated later in section 7.2 (compare table 15). NACA

8410 blade profile, pitch ratio _ = 0.75, blade angle _s = 120°;

values of K = tan a® for angle of attack a_ according to:

K 0 0.05 0.I0 0.14 0.18 0.22 0.26

%0 0° 2.9o 5.70 8.0° 10.2° 12.4° 14.60

Angle of attack for shock-free inflow % st = 6'7°"
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Figures 32 to 43

Pressure distribution on the blade contour for cascades of blades with

NACA 8410 profiles, for a blade angle _5s = 30 °. (Solid curves for

upper side, dashed curves for lower side of the profile; x, l, p, Pl,

p, and W 1 as in figures 16 to 24.)
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Figures 86 to 98

Pressure distribution on the blade contour for cascades of blades with

NACA 8410 profiles, for a blade angle _3s = 150 °. (Solid curves

for upper side, dashed curves for lower side of profile; x, Z, p,

Pl, p, and W 1 as in figures16 to 24. )
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Figures 99 to 104
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0000

Comparison of measured and calculatedpressure distributionson the
blade contour for cascades ofblades with NACA 8410 profiles,for

ratio t = 1.0. Measurements for a Reynolds numbera pitch

W 2 _ _,6 x i08; solidcurves calculatedfor upper side of profile a,

dashed curves for lower side of profile b, curves with open circles
for measured variationon upper side of profile, curves with filled-ln
circles for measured variation on lower side of profile,point for

beginning of the separation denoted by A.
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Figure 99.- Ul = 50; Figure 100.- aI = 15°; Figure 101.- a I = 250;

LSs = 60 o. 13s = 60o. tSs = 60o.
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Figure 109..- _i = I0°;

_s = 120°"

Figure 103.- _'i = 15°;

Ps = 1_0°"

Explanatory sketch t"o figures 99 to 104

Figure 104.- _i = 20o;

_s = 120°"
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Figures 105 to 112

Comparison of measured and calculatedpressure distributionson the
blade contour for cascades ofblades with NACA 8410 profiles,for

various pitch ratios L/l,blade angles _Bs,and angles of attack _i"

(Symbols and explanations as in figures 99 to p04; measurements at

_,6 x 105.)a Reynolds number W 2
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Figure 105.- ]-= 0.5;

_s = 600; _I = 15°"

Figure I06.- _= 0.75; Figure I07.- t= 1.25;

_s =60°; al= 15°" _s= 60o; _i= 15°"

t
Figure 108.- T = 1.5;

_s = 600; _I = 15°"
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Figure 109. - _ = 0.5;

@s = 120°; el = I0°"
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Figure ii0.- t= 0.75; Figure iii.- _= 1.25;

_s = 120°; el = I0°" _s = 120o; el = I0°"

ExplanatOry sketch to figures 105 to ll2

Figure 112.- t = 1.5;

_s = 120°; el = I0°"


